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The spectral properties of disordered fully connected graphs with a special type of node-node interactions
are investigated. The approximate analytical expression for the ensemble-averaged spectral density for the
Hamiltonian defined on the fully connected graph is derived and analyzed for both the electronic and vibra-
tional problems which can be related to the contact process and to the problem of stochastic diffusion,
respectively. It is demonstrated how to evaluate the extreme eigenvalues and use them for finding the lower-
bound estimates of the critical parameter for the contact process on the disordered fully connected graphs.
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I. INTRODUCTION

The spectral properties of complex networks are of great
current interest, both for practical applications and from a
fundamental point of view �1–14�. The physical phenomena
occurring in the network can be described using the opera-
tors defined for the network. For example, the Hamiltonian
describes electronic excitations in the network of atoms
�nodes� characterized by energy levels communicating with
each other by hopping integrals �links�. The Laplacian opera-
tor for a set of atoms connected by elastic springs describes
vibrational excitations �15� or transport phenomena—e.g.,
stochastic diffusion of random-walk type �16,17�. The Liou-
ville operator characterizes the spread of epidemics in the
network �18,19�, and the connectivity operator gives knowl-
edge of the network topology �1–3�. In the matrix represen-
tation, these operators are characterized by matrices, the
eigenspectrum of which gives rather complete information
of, e.g., dynamical properties of the network. The main dif-
ficulty in analytical evaluation of the network spectrum is in
an inherent disorder incorporated into the network matrices.
This can be topological disorder related to irregular Euclid-
ean arrangements of the nodes �e.g., atoms in liquids and
glasses� and/or disorder in connectivity �complex networks,
e.g., of scale-free or small-world type �3�� or disorder in
parameters associated with the nodes and links �e.g., mass
and force-constant disorder for the vibrational problem on a
regular lattice �20� or substitutional disorder in metallic al-
loys �21��.

The first task of the spectral analysis is to evaluate the
spectral density of the relevant operator for a particular real-
ization of disorder. For an ordered system, all the realizations
are identical �zero disorder� and the spectrum of at least
some operators can be easily found. For disordered systems,
this is a highly nontrivial problem and can be solved implic-
itly only for some simple models of local perturbation in a
reference not necessarily ordered system �see Ref. �22� and
references therein�. The next task is to perform the averaging
over different realizations of disorder �configurational aver-
aging�. The configurationally averaged spectral density can

be used then for comparison with the experimentally mea-
sured spectrum �e.g., by inelastic neutron scattering for vi-
brational excitations �15�� or with other observable charac-
teristics �thermodynamical values such as heat capacity or
linear response functions—e.g., the dielectric response func-
tion�. Such a comparison with experimental observables
makes sense if the measurable quantity is self-averaging—
i.e., if the difference between the mean value of the observ-
able for a particular realization of disorder in a macroscopi-
cally large system and the cofigurationally averaged value of
this observable tends to zero with increasing system size
�23,24�. Some of the observables such as thermodynamical
characteristics of spin glasses away from the phase transition
points and of normal glasses at not very low temperatures are
self-averaging. However, some of the observables such as
thermodynamical characteristics of spin glasses at criticality
�25�, low-temperature electron conductance �24�, and dielec-
tric response in disordered semiconductors with strong dis-
order �26� are sample dependent and thus are not self-
averaging.

The spectral density of at least Hamiltonians and Lapla-
cians exhibits decreasing fluctuations with increasing system
size �even at the localization-delocalization threshold point�
and thus is expected to be a self-averaging characteristic
�see, e.g., �27��. This has been seen implicitly in numerous
computer simulations of the spectral properties of disordered
systems �see, e.g., �28� and references therein� and in experi-
ment �29�. Usually, the ensemble averaging is tackled by
means of mean-field theories �30,31� with possible use of the
replica method �32� or introducing supersymmetry �27,33�
but in some cases the “exact” solutions are available. They
are quite rare and examples are the semicircular spectrum for
the fully connected graph �FCG� with random normally dis-
tributed node-node interactions �34,35� �see also Ref. �36��
and Lloyd’s model for a special type of on-site disorder and
any network topology �37,38�.

The main aim of this paper is to present a model dealing
with the disordered Hamiltonians defined on the FCG with a
special type of node-node interactions and a rather general
type of on-site characteristics. It is possible to find an im-
plicit analytical expression for the spectral density for a par-
ticular realization of disorder and then to perform analyti-
cally the ensemble averaging of the spectrum of the
Hamiltonian with precision up to O�N−1� with N being the*Electronic address: snt1000@cam.ac.uk
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number of nodes in the FCG and thus to demonstrate the
self-averaging properties of the spectral density. The analyti-
cal results for the ensemble-averaged spectral density are
available due to the existence of an exact solution for the
matrix elements of the resolvent operator for a particular
realization of disorder. The general solution is specified and
analyzed for several particular problems including electronic
and vibrational problems with multiplicative interactions de-
fined on the FCG. The electronic problem is equivalent to the
contact process in the dilute regime, and the results can be
used for the lower-bound estimate of the critical point for the
contact process which describes, e.g., the spread of epidem-
ics through the network. The vibrational problem is equiva-
lent to the stochastic transport problem, and the results can
be used for the investigation of the dynamics of information
packets propagating through a communication network. The
main analytical results for both the electronic and vibrational
problems are supported by direct numerical diagonalization
of the Hamiltonian.

The paper is organized in the following manner. The for-
mulation of the problem is given in Sec. II. Several simple
examples are considered in Sec. III followed by a general
solution of the problem for polynomial interactions in Sec.
IV. The limitations of the approach are discussed in Sec. V.
The conclusions are made in Sec. VI, and some derivations
are presented in Appendixes A and B.

II. FORMULATION OF THE PROBLEM

Let us consider a FCG containing N nodes. Each node i is
characterized by the parameter �i �node bare energy� and the
link between nodes i and j by the parameter Vij �node-node

interaction�. Then we define an operator Ĥ �“Hamiltonian”�
on this FCG in the following manner:

Ĥ = �
i
��i + ��

j�i

Vij + Vii��i	
i� − �
i,j

Vij�i	
j� , �2.1�

where the self-interaction matrix element Vii is introduced
for convenience �the Hamiltonian, in fact, does not depend
on it�. The tuning parameter � gives an opportunity to dis-
tinguish between two types of problems: �i� electronic like
for �=0 and �ii� vibrational like when �=1 and all �i=0 �see

also �39��. For vibrational problem, the operator Ĥ is the
Hessian operator and its elements obey the sum rule Vii
=� j�iVij, which follows from the global translational invari-
ance of the Hamiltonian �15�.

Both the electronic and vibrational problems are usually
defined on networks with Euclidean topology describing real
materials. Below, we consider a FCG and thus the physical
meaning of the Hamiltonian �2.1� defined on the FCG should
be specified. This can be done by introducing two mappings.

First, the electronic Hamiltonian ��=0� is equivalent to

the Liouville operator L̂ describing the contact process in the
dilute regime �40�. Indeed, the time evolution of the state
vector, �P�t�	, for the contact process is governed by the mas-
ter equation describing the conserved probability flow �19�
�t�P�t�	= L̂�P�t�	, which can be rewritten in the dilute regime
as �see Ref. �40� for more details�

�tP̄i�t� = − riP̄i�t� + �
j�i

WjiP̄j�t� , �2.2�

where P̄i�t� is the probability of finding node i in an occupied
state independent of the occupation of all the other nodes
which can be in two states, occupied �infected� or unoccu-
pied �susceptible�, ri is the recovery rate for node i, and Wji
is the transmission �infection� rate between node j and i. The
formal solution of Eq. �2.2� is given by

�P̄�t�	 = eL̂t�P̄�0�	 = �
j

e�jt
e j�P̄�0�	�e j	 , �2.3�

with � j and �e j	 being the eigenvalues and eigenvectors of the
Liouville operator, respectively, which coincides with the
Hamiltonian �2.1� for �=0, ri=−�i, and Vij =−Wij. The long-
time behavior of the contact process in the dilute regime is
defined by the maximum eigenvalue � j,max, and if � j,max�0,
then the epidemic goes to extinction and it invades if � j,max
�0. The approximate rate equation �2.2� has been obtained

by replacing the term �P̄j�t�− P̄ji�t�� �where P̄ji�t� is the prob-
ability for both nodes i and j to be occupied independent of
the state of all the other nodes� in the exact equation with

P̄j�t�. Such an approximation enhances the transmission of
the disease, and thus the estimate of the critical point ob-
tained from the solution of the equation � j,max=0 gives a
reliable lower bound estimate of the critical parameter for the
contact process, meaning that if the disease does not spread
in the dilute regime, then it certainly does not spread in the
system. This can be practically important for controlling epi-
demics in disordered systems where the estimate of the exact
value of the critical parameter is a rather complicated task
�41–43�.

The second mapping connects the vibrational problem to
the problem of stochastic diffusion through a net. While the
contact process describes a propagation of excitations �in-
fected nodes� through the net with a not-conserved number
of excitations �the number of infected nodes changes with
time�, then the standard stochastic diffusion deals with
propagation of the conserved number of excitations �diffus-
ing particles� through the net by means of diffusional jumps
�characterized by the rates Wij� between the nodes. The bal-
ance equation for stochastic diffusion coincides with Eq.
�2.2� where ri is replaced by � j�iWij �16,44,45� which re-
flects the conservation of the number of particles. Therefore,
under the assumption of symmetric transition rates Wij =Wji,
stochastic diffusion through the network is described by the
Hamiltonian �2.1� with �=1, �i=0, and Vij =−Wij. For com-
plex networks, such as the FCG, the diffusing particles can
be associated, e.g., with the information packets propagating
through the communication network �3�. The quantity of in-
terest can be, e.g., the return probability of the diffusing par-

ticle to the starting place, 
P0�t�	=N−1Tr exp�Ĥt� �see, e.g.,
�46��.

The aim of our analysis is to find the eigenspectrum of the
Hamiltonian �2.1� defined on the FCG. In the site �node�
basis, the Hamiltonian matrix is fully dense and, for the gen-
eral case of arbitrary parameters �i and Vij, its diagonaliza-
tion is not a trivial task and the solution is not currently
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known. However, for the classical case of a random matrix
belonging to the Gaussian orthogonal ensemble, when the
off-diagonal �diagonal� elements are independent and nor-
mally distributed �with variance doubled for diagonal ele-
ments�, the configurationally averaged spectrum of semicir-
cular shape can be evaluated analytically �with errors of
O�N−1�� �31,35�. One of the key features of the matrices
belonging to the Gaussian orthogonal ensemble is the statis-
tical independence of the matrix elements.

Below, we suggest another class of real symmetric matri-
ces for which the spectral density can be found for a particu-
lar realization of disorder and then the ensemble averaging
can be performed analytically. These are matrices with a par-
ticular �polynomial� type of the node-node interactions:

Vij = �i
T�� j , �2.4�

where �i
T is a n-dimensional row vector, �i

T

= �1,�i ,�i
2 , . . . ,�i

n−1�, and � is a real symmetric n	n matrix
of interaction coefficients, so that Vij��i ,� j� is a symmetric
polynomial form of order 2n−2 with respect to �i and � j,
e.g., Vij =
11+
12��i+� j�+
22�i� j for n=2. The values of
�i are independent random variables characterized, in gen-
eral, by different probability distribution functions ��i

��i�.
The order of interaction, n, is supposed to be much less than
the number of nodes in the system, n�N. The diagonal ele-
ments �i in such matrices are also random independent vari-
ables distributed according to the probability distribution
functions ��i

��i�. The probability distributions ��i
��i� and

��i
��i� are assumed to have all finite moments unless it is

stated differently.
We demonstrate below that the matrix elements of the

resolvent �Green’s function� operator Ĝ, defined by the equa-

tion ��Î−Ĥ�Ĝ= Î, can be found exactly for the interactions
given by Eq. �2.4�. This means that the density of states
�DOS�, g���, is available for a particular realization of disor-
der according to the identity �47�

g��� = −
1

N
Im TrĜ�� + i0� . �2.5�

Due to the availability of the analytical expression for g���,
its configurational averaging 
g���	 can also be undertaken
analytically by means of the integration �for N→��


g���	 = N−1�
i

��� − �i��
�� ¯� N−1�

i

��� − �i��
i

��i
��i���i

��i�d�id�i,

�2.6�

where �i are the eigenvalues �eigenenergies� of the Hamil-
tonian.

III. SIMPLE EXAMPLES

Before considering the general case of the polynomial
node-node interactions �2.4�, we present, first, three simple
examples where the exact solution of the problem is avail-

able. These examples are for �i� the ideal FCG, �ii� the binary
FCG, and �iii� Lloyd’s model defined on the FCG. In all
cases, the biological �epidemiological� applications of the re-
sults are discussed.

A. Ideal fully connected graph

A trivial case we need as a reference for further analysis is
an ideal FCG, for which all the on-site energies are identical,
��i

��i�=���i−�0�, and all the interactions are the same,
��i

��i�=���i−�0� �so that Vij =V0�; see Fig. 1�a�. The diag-
onal elements of the resolvent are

Gii
�0� =

N − 1

� − �̃0

+
1

� − �̃0 + NV0

, �3.1�

where �̃0=�0+V0+��N−1�V0, and thus the spectrum of the
ideal FCG contains two � functions, one of which is �N
−1� degenerate,

g0��� = 
g0���	 = �1 −
1

N
���� − �̃0� +

1

N
��� − �̃0 + NV0� .

�3.2�

The spectrum of the Hamiltonian defined on the ideal FCG

obviously obeys the “energy-conservation” principle TrĤ
=N�0, meaning that the interactions do not change the total
bare energy. If disorder is introduced in the ideal system, it is
quite natural to expect the broadening of the
�N−1�-degenerate level to the band and possibly the appear-
ance of more levels split from the band. This is exactly what
happens in the disordered FCG according to the analysis
presented below.

In terms of biological applications, Eq. �3.2� can be used
for estimating the value of the critical parameter �c �this can
be the ratio of the typical transmission and recovery rates�
separating the absorbing ����c� and active ����c� states
of the system with respect to the spread of the contact pro-
cess �epidemic�. Indeed, the maximum eigenvalue of the
spectrum coincides with the position of the nondegenerate �
function and is equal to �max= �N−1�W0−r0 �bearing in mind
that �=0, W0=−V0, and r0=−�0�. The solution of the equa-
tion �max=0 gives a standard mean-field estimate for the
critical parameter �c

*= �W0 /r0�c
*= �N−1�−1 �19�. Obviously, if

the transmission rate W0 is N independent, then the critical
value �c

* approaches zero for large values of N and the sys-
tem is always in the active state �3�. However, if we assume
that the transmission rate is inversely proportional to the
number of nodes �in a migrating biological population the

FIG. 1. �Color online� Ideal �a� and binary �b� fully connected
graphs with N=5.
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interaction time between the members of the population can
be inversely proportional to the population size�, W0=w0 /N,
with w0 being independent of N, then the critical point exists
and the estimate for the critical parameter is �w0 /r0�c

*=1.

B. Binary fully connected graph

Another simple example of the network is a binary FCG
�see Fig. 1�b��, for which the spectrum for a particular real-
ization of disorder is available and configurational averaging
of the DOS can be performed exactly. The binary FCG con-
sists of nodes of two types, A and B. The on-site energies �A
and �B and the node-node interactions VAA, VBB, and VAB are
defined by the types of the nodes. The node-node interac-
tions, in general, are not of multiplicative form and can be
described by Eq. �2.4� only if VAB

2 =VAAVBB. The only ran-
dom parameter for the binary FCG is the number of nodes of
a certain type—e.g., NA, which is defined by the probability
p �parameter of the model� for a node to be of type A. The
values of NA or equivalently of concentration c=NA /N are
distributed according to the binomial probability distribution
�c�c� with the expectation value E�c�= p and variance
var�c�= p�1− p�N−1 which is close to the variance of the nor-
mal distribution for N→�.

The spectral density for the electronic ��=0� Hamiltonian
�2.1� defined on the binary FCG characterized by a particular
value of concentration c contains four � functions

g��� = �c − N−1���� − �̃A� + �1 − c − N−1���� − �̃B�

+ N−1 �
i=1,2

��� − �i� , �3.3�

where �̃A=�A+VAA and �̃B=�B+VBB. Only the two last �
functions

g1��� = N−1 �
i=1,2

��� − �i� �3.4�

depend on the random parameter c� �0,1� and thus should
be configurationally averaged. The values of �i in Eq. �3.4�
are the roots of the spectral determinant, D��i�=0, where

D��� = �1 +
cNVAA

� − �̃A
��1 +

�1 − c�NVBB

� − �̃B
� −

c�1 − c�N2VAB
2

�� − �̃A��� − �̃B�
.

�3.5�

The above expression for D��� can be derived in a manner
similar to the derivation for multiplicative interactions �see
Appendix A�.

For simplicity, we consider a symmetric binary FCG char-
acterized by �A=�B=�0=−r0 and VAA=VBB=V0 and also as-
sume that the node-node interactions are negative and in-
versely proportional to N, so that the interaction parameters
w=−NV0 and �=−NVAB are positive and N independent. In
this case, the c-� map defined by the equation D���=0, with
D��� obeying Eq. �3.5�, is given by the bilinear form

�� + r0 − w/2�2 + ��2 − w2��c − 1/2�2 = �2/4, �3.6�

where we have ignored the terms �N−1. Therefore, the posi-
tions of the � functions in Eq. �3.4� can be found as the roots
of Eq. �3.6� for a particular value of c,

�1,2 = − r0 +
w

2
±��2

4
− ��2 − w2��c −

1

2
�2

. �3.7�

The form �3.6� is hyperbolic for a weak interaction ��
�w� between subgraphs A and B and elliptic for strong cou-
pling ���w�. The configurational averaging in Eq. �3.4� is
straightforward and


g1���	 =
N−1�� + r0 − w/2�

���2 − w2���2/4 − �� + r0 − w/2�2�
��c�c1� + �c�c2�� ,

�3.8�

where c1,2=1/2± ���2 /4− ��+r0−w /2�2� / ��2−w2��1/2. The
analysis of Eq. �3.8� shows that, for any finite N, two �
functions are broadened by disorder into two bands separated
by a gap of width Wg=� for weak coupling and Wg=w for
strong coupling �see Figs. 2�a� and 2�b�, respectively�. The
nonlinearity of the map results in the singular behavior of the
ensemble-averaged DOS around �=−r0+w /2±� /2 where

g1���	� ��+r0−w /2�� /2�−1/2.

The ensemble-averaged spectrum for the binary FCG is
bounded from the top by energy �max, knowledge of which is
quite important from the applicational viewpoint �see be-
low�. The value of �max is easy to find from Eqs. �3.6� and
�3.8�, and it is

�max = − r0 + w for � � w �3.9�

and

�max = − r0 +
1

2
�w + �� for � � w . �3.10�

Equations �3.9� and �3.10� give the upper boundaries for
the maximum eigenvalues for a particular realization of
disorder—i.e., for a particular value of c. In the limit of large
values of N→�, the binomial distribution �c�c� is of the
Gaussian form characterized by the negligible width and thus

FIG. 2. �Color online� The c-� map �dashed line� for the sym-
metric binary FCG in the regime of weak �a� and strong �b� cou-
pling. The ensemble-averaged DOS �scaled� 
g1���	 and the prob-
ability distribution function �scaled� �c�c� are shown by the solid
and dot-dashed lines, respectively. The values of the parameters are
�a� �0=1, w=1, and �=0.1 and �b� �0=1, w=0.1, and �=0.5. The
probability p=0.5 and N=100 for both regimes.
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it approaches the �-functional peak. Consequently, both en-
ergy bands collapse into two � functions located at �=�1,2
given by Eq. �3.7� and �max��1. Therefore, the critical value
of parameter �=w /r0 can be found from the solution of
equation �1=0. In the limit of weak coupling between the
subgraphs, ��w, the critical value �c

* depends on c and lies
in the interval 1��c

*�2/ �1+� /w�. The value of �c
* reaches

the maximum �c
*=2/ �1+� /w� for the homogeneous FCG

when c=0 �FCG contains only nodes of type B� or c=1
�FCG contains only nodes of type A�. The minimum �c

*=1 is
attained for equal concentrations of nodes A and B—i.e.,
when c=0.5. In the regime of strong coupling between sub-
graphs, ��w, the situation changes to the opposite one so
that 2 / �1+� /w���c

*�1 and the lowest value of �c
* corre-

sponds to c=0.5.
Biologically, this means that mixed populations contain-

ing two species are most vulnerable to epidemics for equal
concentrations of species if these species strongly interact
with each other �in terms of transferring disease�, and if the
species do not interact strongly enough, then the mixture of
species enhances the resistance of the population.

The above estimates hold for the populations of organ-
isms which are able to communicate �transfer a disease� to
all other members of the population—i.e., for populations
having the communication network with the topology of the
FCG. The other assumption is that the transmission rate be-
tween two individuals is inversely proportional to the num-
ber of individuals in the population. This is a plausible as-
sumption for migrating individuals when the probability to
establish a contact can be proportional to N−1.

C. Lloyd’s model

It is known that the configurational averaging of the spec-
tral density can be performed analytically for the network of
any topology, and thus for the FCG as well, if the diagonal
elements of the Hamiltonian matrix are distributed according
to the Cauchy distribution

��i
��i� = ����i� =

�



1

�2 + ��i − �0�2 , �3.11�

where � is the width of the distribution and all the relevant
node-node interactions are not random, Vij =V0 �Lloyd’s
model �37��.

The diagonal elements of the configurationally averaged
resolvent operator 
Gii���	 can be expressed via the resolvent
elements for the ideal FCG, Gii

�0�, with the argument shifted
to the upper half of the complex plane, 
Gii���	=Gii

�0���
+i��. Therefore the ensemble-averaged spectral density for
Lloyd’s model defined on the FCG has the following form:


g���	 = �1 −
1

N
���„� − V0 − ��N − 1�V0…

+
1

N
��„� − �� − 1��N − 1�V0…; �3.12�

i.e., the DOS is obtained from that for the ideal FCG by
broadening of both � functions in Eq. �3.2� into two Lorent-

zian peaks. Formally, the FCG with on-site energies distrib-
uted according to the Cauchy distribution is equivalent to the
ideal FCG with nodes characterized by the complex on-site
energies �see also �48��.

In contrast to the binary FCG, the widths of both of the
Lorentzian peaks in Eq. �3.12� do not depend on N and for
any value of � it is possible to find such a value of N starting
from which the positive eigenvalues appear in the spectrum.
This means that Lloyd’s model on the FCG is not resistant to
the invasion of epidemics at least in the dilute regime. It is a
consequence of the special form of the distribution of the
recovery rates given by Eq. �3.11� with not existing high
moments.

IV. POLYNOMIAL INTERACTIONS

We have considered above several simple examples of the
FCG for which the spectrum can be found exactly and its
configurational averaging can be performed analytically. A
natural question arises about the possibility of a similar
analysis in the case of more general disorder. Below, we
demonstrate that indeed in the case of polynomial node-node
interactions such an analysis is possible.

A. General solution

In the case of polynomial node-node interactions for the
FCG, the matrix elements of the resolvent operator in the site
basis can be found exactly and the spectral density for a
particular realization of disorder is given by the following
formula �see Appendix A�:

g��� = g0��� + �g���

=
1

N
�

i

N

��� − �̃i� −
1

N
Im

d

d�
�ln�det D����� .

�4.1�

Here the renormalized bare energies �̃i are given by Eq. �A2�
and the spectral determinant det D��� satisfies Eq. �A7�.

Assuming for simplicity that all �i and �i are identically
distributed according to the probability distribution functions
��i

��i������i� and ��i
��i������i�, respectively, the spectral

density g��� can be configurationally averaged according to
Eq. �2.6�,


g���	 = 
g0���	 + 
�g���	

= �
−�

�

����i����� − Ṽii�d�i −
1

N

d

d�

arg�det D����	 ,

�4.2�

where

Ṽii = ��i
T�

j

N

� j + �1 − ���i
T�i � �N�i

T�̄ + �1 − ���i
T�i,

�4.3�

with �i
T=�i

T� and �̄=�−�
� �i����i�d�i so that Ṽii depends on

the characteristics of node i only �see below for the justifi-
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cation of this approximation�. The ensemble-averaged spec-
tral density 
g���	 has two contributions. The first contribu-
tion 
g0���	 is given by the convolution of two probability
distributions; one of them, ��, is shifted along the energy axis
due to the node-node interactions. If both distributions �� and
�� are band shaped �e.g., normal, box, or �-functional distri-
butions�, then the function 
g0���	 also has the shape of a
band of typical width � defined via the widths of the distri-
butions �� and ��.

The other contribution to the spectral density comes from

�g���	, and its magnitude is negligible in the main band
region �due to the factor N−1 in Eq. �4.2�� and finite outside
the band with 
�g���	 being in the form of several peaks �see
below�. The functional form of 
�g���	 depends on the prop-
erties of the spectral determinant det D. It follows from Eq.
�A7� that the spectral determinant is a random value which
depends only on macroscopic sums, ak=�i

Naki=�i
N�i

k��
− �̃i�−1—i.e., det D=D�� ;a0 ,a1 , . . . ,a2n−2�. According to the
central limit theorem, the values of ak are distributed around
the mean value ak�Naki in the peak region of width �ak
��Nvar�aki��1/2; i.e., the relative peak width of this distribu-
tion approaches zero in the thermodynamic limit �N→��,
�ak /ak�N−1/2→0. Bearing this in mind we can perform con-
figurational averaging of the phase of the spectral determi-
nant in Eq. �4.2� approximately �assuming, in fact, that the
spectral density is a self-averaging quantity�,


arg�det D��;a0,a1, . . . ,a2n−2��	

� arg�det D��;a0,a1, . . . ,a2n−2�� , �4.4�

where

ak��� = N�
−�

� �
−�

� �i
k

� − �i − Ṽii��i�
����i�����i�d�id�i

= N�
−�

�

�i
kR�� − Ṽii��i��d�i

+ iN�
−�

�

�i
kI�� − Ṽii��i��d�i, �4.5�

with

R�z� =
W

−�

� ����i�
z − �i

d�i and I�z� = − ���z� . �4.6�

Equation �4.4� becomes exact for an infinite number of
nodes. Note that the same arguments were used in the deri-
vation of Eq. �4.3� for replacing � j

N� j with N�̄ resulting in

Ṽii being a function of �i only but not other � j for j� i.
Expressing the phase arg�det D�� ;a0 ,a1 , . . . ,a2n−2�� via

real and imaginary parts of the spectral determinant, D= D̃

+iD5 , and differentiating it with respect to energy according
to Eq. �4.2� we arrive at the following final expression for

g���	:


g���	 = 
g0���	 + 
�g���	

� �
−�

�

����i����� − Ṽii�d�i −
1

N

D̃D5 � − D̃�D5

D̃2 + D5 2
,

�4.7�

where a prime means differentiation with respect to �. This is
the main result of the paper. Equation �4.7� allows the spec-
tral density of the FCG with polynomial interactions to be
calculated for rather general distributions of the bare energies
�i and interaction characteristics �i. The functional form of
the spectral determinant D��� depends on a concrete formu-
lation of the problem but it is irrelevant for the main band
shape and can influence only the positions of discrete levels
split from the main band. An alternative derivation of Eq.
�4.7� by means of direct integration of the left-hand side of
Eq. �4.4� �and thus demonstrating the self-averaging property
for the spectral density� is presented in Appendix B for mul-
tiplicative interactions in the electronic case.

In the band region, where the contribution from 
g0���	 is

significant, both functions D̃��� and D5 ��� are typically of the

same order of magnitude, D̃�D5 and D̃��D5 �� D̃ /� �if n
�N�, so that the contribution from 
�g���	 to the total
ensemble-averaged spectral density is macroscopically
small, 
�g���	��N��−1. This is not surprising and is a con-
sequence of the particular form of node-node interactions
given by Eq. �2.4�, forcing the majority of the eigenvalues �i
of the Hamiltonian �2.1� �the roots of the spectral determi-
nant, D��i�=0� to be bound between the consequent renor-
malized bare energies—i.e., �i� ��̃ j , �̃ j+1�. This property is
similar to the well-known phenomenon of the spectral recon-
struction caused by the interactions of one level �e.g., asso-
ciated with the defect� with a continuum of levels �band�
�see, e.g., Refs. �15,22,38,49,50� and the discussion in Sec.
IV B�.

Outside the main band region, where D5 →0, the function

�g���	 contributes in the form of the Gaussian peaks �see
the explanation below�, 
�g���	=�i=1

m N�E��*i� ,var��*i��, of
width ��*i=�var��*i� and centered around the expectation
value E��*i� (the function N�E�x� ,var�x�� stands for the nor-
mal distribution of x with the expectation value E�x� and
variance var�x�). The peak locations coincide with the roots

of the real part of the spectral determinant, D̃�E��*i��=0, and
the number of roots, m, cannot exceed the order of the spec-
tral determinant—i.e., the order of interactions, m�n. In-
deed, for energies far away from the band, E /��1 where

E= ��− �̄− Ṽjj� �where Ṽjj =�Ṽjj���� j�d�i and
�̄=��i����i�d�i�, we can estimate the value of āk�N�k /E, so
that the spectral determinant is the nth-order polynomial of
�N /E� with constant finite coefficients �under the assumption
that the interaction coefficients 
ij do not depend on N�. It
can have maximum n of N-independent roots, so that ��*i

− �̄− Ṽjj��N. This means that the Gaussian peaks are mainly
macroscopically separated from the band.

Therefore, the interactions of polynomial type �2.4�
change the bare spectrum �i of the Hamiltonian �2.1� in the
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following manner: �i� the bare band is shifted and deformed
and �ii� several isolated levels macroscopically separated
from the band are formed. Such a picture will be supported
below by detailed analysis of some simple cases of the low-
order interactions for n=2.

B. Multiplicative interactions for the electronic problem

We start the analysis with the simplest case of multiplica-
tive �separable� node-node interactions, when the second-
order interaction matrix contains only one nonzero element

22, so that

Vij = �1 �i��0 0

0 
22
�� 1

� j
� = 
22�i� j . �4.8�

The spectral determinant for a particular realization of disor-
der is

D��� = 1 + �
i

N

22�i

2

� − �̃i

, �4.9�

with

�̃i = �i + Ṽii � �i + �
22N�i�̄ + �1 − ��
22�i
2. �4.10�

We consider below the electronic problem ��=0� mainly but
the general results for arbitrary values of � will be presented
when possible.

The roots of the spectral determinant, �i, are bound be-
tween the renormalized bare energies, �i� ��̃i−1 , �̃i� �for 
22

�0�, which is obvious from the functional form of D���
given by Eq. �4.9�. Therefore the eigenvalues of the Hamil-
tonian are expected to be very close to the renormalized bare
energies, �i= �̃i+O�� /N�, and the changes in the spectral
density within the band region for �̃i due to interactions �4.8�
should be negligible ��N−1�. This property is very similar to
Rayleigh’s theorem in the theory of vibrations in disordered
systems �15�.

The ensemble-averaged spectral density is given by Eq.
�4.7� with

D̃��;a2� = 1 + Re a2��� = 1 + N�
−�

�


22�i
2R�� − Ṽii�d�i

�4.11�

and

D5 ��;a2� = Im a2��� = N�
−�

�


22�i
2I�� − Ṽii�d�i,

�4.12�

where the functions R�z� and I�z� are defined by Eq. �4.6�.
The properties of the function 
g���	 have already been dis-
cussed above. In particular, in the main-band region the con-
tribution from 
�g���	 is negligible ���N��−1� while outside
the band it can exhibit Gaussian peaks. For multiplicative
interactions, there is only one Gaussian peak outside the
band, 
g���	�
�g���	�N��* ,�2�, with the peak position be-

ing the solution of the equation D̃��*�=0—i.e.,

1 + N�
−�

�


22�i
2R��* − Ṽii�d�i = 0. �4.13�

This equation can be solved approximately assuming that the
level �* is split from the band far enough in comparison with

the band width—i.e., ��*− �̄− Ṽii� /��1,

�* � �̄ − N
22�
2. �4.14�

Indeed, we see from Eq. �4.14� that the distance between the
isolated level and the main band is macroscopically large,
�N �if the coefficient 
22 does not depend on N�, which is
consistent with the result for the ideal FCG �see Eq. �3.2��
showing the similar structure of the spectrum with the �N
−1�-degenerate level playing the role of the main band.

In order to estimate the width of the Gaussian peak, we
consider a particular jth realization of disorder for which the
random value of � j* can be estimated in a similar manner,
� j*�N−1�i

N�i−
22�i
N�i

2. From this expression according to
the central-limit theorem, we conclude that the values of � j*
are normally distributed with the expectation value given by
Eq. �4.14� and with variance

�2 �
var��i�

N
+ N
22

2 var��i
2� . �4.15�

This expression for the variance coincides with that given by
Eq. �B22� more rigorously derived in Appendix B. It follows
from Eq. �4.15� that the peak width � depends on N and it
increases with N, ���N, if the interaction coefficient 
22
does not depend on N. However, if 
22�1/N, the peak width
decreases with N, ��1/�N, and the peak collapses to a �
function in the thermodynamic limit.

All the results presented above for the multiplicative in-
teractions are supported in Appendix B by an alternative
derivation of Eqs. �4.7�, �4.11�, and �4.12� for the ensemble-
averaged spectral density using direct approximate integra-
tion of Eq. �2.6�.

Numerical analysis confirms all the conclusions made
above. Figure 3 demonstrates both the main band �a� and the
Gaussian peak �b� for the case of multiplicative interactions
for the electronic problem ��=0� defined on the FCG. It is
clearly seen how the interactions shift the Gaussian bare
band �dot-dashed curve in Fig. 3�a�� and change its shape.
The isolated level is normally distributed �see Fig. 3�b�� and
macroscopically shifted down along the energy axis. For all
cases, the results of direct diagonalization are practically in-
distinguishable from those obtained in accord with analytical
expressions.

The evaluation of the integral in the expression for 
g0���	
�see Eq. �4.7�� has been performed numerically in the above
example illustrated in Fig. 3. Such an integration becomes
trivial if one of the probability distribution functions is a �
function. For example, if the on-site energies are randomly
distributed while the interactions are all the same, ����i�
=���i−�0�, the configurationally averaged spectral density
coincides with the shifted distribution of the on-site energies,

g0���	=����−
22�0

2� �due to the linear map between �i and
�—i.e., �= �̃i=�i+
22�0

2, which follows from Eq. �4.10��. On
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the other hand, the on-site energies can be all the same,
����i�=���i−�0�, but the interactions are randomly distrib-
uted. In this case, due to the quadratic map between �i and
�—i.e., �= �̃i=�0+
22�i

2 �see Eq. �4.10��—there are two
contributions to the ensemble-averaged DOS from different
branches of this quadratic map �see Fig. 4�,


g0���	 =
1

2�
22�� − �0�
������ − �0


22
� + ���−�� − �0


22
�� ,

�4.16�

with � obeying the inequality 
22��−�0��0. The ensemble-
averaged DOS exhibits a singular behavior around the
boundary of the spectrum at ���0 �see Fig. 5�,


g0���	 �
���0�

�
22�� − �0�
, �4.17�

if ���0� is a finite nonzero value. From this example, we see
that the bare spectral density can display quite drastic
changes in shape depending on the type and probability dis-
tribution of the interaction parameters.

In terms of epidemiological applications, the above analy-
sis can be used for an estimate of the critical parameter �c.
Indeed, the low-bound estimate for �c can be easily obtained
for the FCG with polynomial interactions by finding the po-
sition of the largest isolated eigenvalue �*

max and solving the
equation �*

max��c
*�=0 with �*

max being the largest root of the

real part of the spectral determinant, D̃��*
max�=0. An impor-

tant and general conclusion which follows from the analysis
presented above is that the isolated normally distributed
roots of the real part of the spectral determinant scale linearly
with N—i.e., �*

max�N—if the interaction coefficients 
ij and
the interaction parameters �i, and thus the transmission rates
Wij, do not depend on N. This means that the equation
�*

max��c
*�=0 does not have a solution independent of N and

the system does not exhibit a phase transition in the thermo-
dynamic limit �it is always in the active state�. In the oppo-
site case, when the transmission rates are inversely propor-
tional to N, the maximum eigenvalue does not depend on N
and the transition exists at least for the Hamiltonian in the
dilute regime. The concrete value of the critical parameter �c

*

depends on the particular type of the interactions and the
probability distributions for recovery and transmission rates.

FIG. 3. �Color online� The ensemble-averaged DOS �the main
band, 
g���	�
g0���	, in �a� and separate level, 
g���	�
�g���	,
outside the main band in �b� for electron problem ��=0� defined on
the FCG with multiplicative interactions. Both the on-site energies
�i and interaction parameters �i are normally distributed according
to ����i�=N�0,0.09� �the dot-dashed line in Fig. 1�a�� and ����i�
=N�1,0.09�; 
22=1. The dashed lines in �a� and �b� are plotted
according to the first term in Eq. �4.7� and Eqs. �B21� and �B22�,
respectively. The solid lines represent the data obtained by direct
diagonalization of the Hamiltonian for N=1000 nodes and averag-
ing over 104 configurations. The DOS in Fig. 3�b� is scaled by
factor N.

FIG. 4. �Color online� The �-� parabolic map �dashed line� for
the electron problem ��=0� defined on the FCG with multiplicative
interactions ��0=2, 
22=1�. The interaction parameters are nor-
mally distributed according to ����i�=N�1,0.16�. The ensemble-
averaged DOS �scaled� 
g���	�
g0���	 and the probability distri-
bution function �scaled� ����i� are shown by the solid �Eq. �4.16��
and dot-dashed lines, respectively. The dots scattered around the
solid line were obtained by direct diagonalization of the Hamil-
tonian �N=3000� and by averaging over 300 realizations of
disorder.

FIG. 5. �Color online� The double-logarithmic plot of 
g���	
�
g0���	 shown in Fig. 4 around the singularity. The solid line was
obtained using Eq. �4.17�, and the dots represent the results of direct
diagonalization. The dashed line ��−1/2 is used as an eye guide.
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C. Multiplicative interactions for the vibrational problem

For vibrational problem defined on the FCG ��=1 and
�i=0� with multiplicative interactions, the ensemble-
averaged DOS is given by Eq. �4.7� with ��i

��i�=���i� and

�̃i = 
22N�i�̄ � ��i�̄ , �4.18�

where �=
22N. Equation �4.18� reveals the linear map be-
tween �i and �—i.e., �= �̃i=��i�̄—and thus for the main
band,


g0���	 =
1

���̄�
��� �

��̄
� . �4.19�

If the coefficient 
22 does not depend on N, then ��N and
the location of the main band 
g0���	 also scales with N. In
the opposite case of � being independent of N, the ensemble-
averaged spectral density is N independent. Figure 6 illus-
trates the high quality of the approximate expression for

g0���	�
g���	 in the band region �the solid line in Fig. 6�
by comparison with the results obtained by direct diagonal-
ization of the Hamiltonian matrix �the dashed line in Fig. 6�.

Similarly to the electronic problem, the contribution of

�g���	 to the spectral density is negligible ��1/N� in the
main-band region. A specific feature of the vibrational prob-
lem is that one of the peak-shaped contributions from

�g���	 is always of the �-functional form at exactly zero
energy. For the multiplicative interactions, this is the only
peak-shaped contribution—i.e., 
�g���	=N−1����. This is a
consequence of the global translational invariance of the
Hamiltonian and also follows from the solution of the equa-

tion D̃��*�=0, which reads

D̃��*� = 1 + �
−�

� ��i
2

�* − ��̄�i

����i�d�i = 0. �4.20�

Obviously, the value of �*=0 is the solution of Eq. �4.20�
and thus the peak is located at zero energy. This statement
holds for an arbitrary realization of disorder, when the inte-
grals in Eq. �4.20� should be replaced by finite sums and thus
the peak associated with �* is of �-functional form.

Therefore, the vibrational problem defined on the FCG
with multiplicative interactions has a relatively simple
ensemble-averaged spectral density. It contains the main
band which is obtained by rescaling of the probability distri-
bution for interaction parameters and a �-functional peak at
zero energy.

The results obtained for the vibrational problem can be
applied to the investigation of the transport properties of
communication networks characterized by symmetric trans-
mission rates Wij =−Vij �0 �i.e., ��0� and Wij =Wji. For
example, the above analysis for separable node-node interac-
tions is applicable for a network with communication chan-
nels charcterized by multiplicative functions �51�. In this
case, the dynamical characteristics of a packet propagating
through the network crucially depend on the functional form
of the distribution, ����i�, of the interaction parameters �i.
One of these characteristics is the return probability 
P0�t�	
of the packet to the starting point of its diffusion through the
network �see, e.g., �46��,


P0�t�	 = N−1Tr exp�Ĥt� = �
−�

�

e�t
g0���	d� +
1

N
,

�4.21�

where 
g0���	 is given by Eq. �4.19�. The spectrum of the
Hamiltonian �2.1� is negative except for one eigenvalue lo-
cated exactly at zero which gives rise to the last term in Eq.
�4.21� describing the random return of the packet to the ori-
gin. The time dependence of the return probability is dictated
by the functional form of ����� in Eq. �4.19�. If the distri-
bution ����� has the form of a band, �� ��min,�max�, sepa-
rated from zero by a gap—i.e., �min�0—then the long-time
behavior of the first term in Eq. �4.21� for the return prob-
ability is exponential, 
P0�t�	�exp�−��̄�mint�. On the other
hand, if the distribution of � starts from zero with ����
→0���
 with 
�−1, the return probability decays with
time according to the power law 
P0�t�	� t−
−1 for large
times. This property can be quite important for monitoring
the localization properties of the information packets by
means of choosing the appropriate distribution for the inter-
action parameters �i.

D. Polynomial interactions of higher orders

To conclude this section about polynomial interactions de-
fined on the FCG, we should emphasize that there are no
principal difficulties in extending the above analysis to the
cases of higher-order interactions with n�2. The features of
the ensemble-averaged spectral density will be the same as
for the multiplicative interactions. The shape of the main

FIG. 6. �Color online� The ensemble-averaged DOS for the vi-
brational problem ��=1� defined on the FCG with multiplicative
interactions. The random interaction parameters �i are normally
distributed according to ����i�=N�1,0.09�; �=1. The dashed line
is plotted according to Eq. �4.19�, and the data for the solid line are
obtained by direct diagonalization of the Hamiltonian for N=3000
nodes and averaging over 50 configurations.
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band can vary significantly depending on the order of inter-
action and the probability distributions of the bare energies
and interaction parameters.

A typical example is shown in Fig. 7 for the electronic
problem ��=0� defined on the FCG with polynomial inter-
actions of order n=6 characterized by a normal distribution
of the interaction parameters and a �-functional distribution
of the bare energies. In this case, the convolution of the
probability distributions in Eq. �4.7� is trivial and the band
shape is dictated by the nonlinear �-� map �see the inset in
Fig. 7� given by the polynomial of order 2n−1 with the
singularities in the DOS being due to the extremal points in
the �-� map. The ensemble-averaged DOS calculated ac-
cording to Eq. �4.7� �dashed line� is practically identical to
the exact one �solid line� obtained by direct diagonalization
of the Hamiltonian. The isolated levels �i* can be found if
necessary by solving the equation for the real part of the

spectral determinant, D̃��i*�=0.

V. LIMITATIONS

In the previous section, we have demonstrated that the
evaluation of the spectral density and its configurational av-
eraging for the Hamiltonian defined on the FCG can be per-
formed analytically in some special cases. Namely, this can
be done for the binary FCG exactly and approximately for
the FCG with a particular polynomial type of node-node in-
teractions. One of the restrictions for the polynomial interac-
tions is that the order of interactions must be much less than
the number of nodes in the FCG, n�N. Generally speaking
the solution given by Eq. �4.7� is valid for arbitrary values of
n but it becomes “useless” for n�N in the sense that the
conclusions made above about the structure of 
g���	 do not
necessarily hold for this case. For example, the maximum
number of levels split from the main band due to polynomial
interactions should be less or equal to the order of interac-

tions, n, and therefore it can reach the value of N if n�N.
This means that the main band described by 
g0���	 in Eq.
�4.7� can disappear completely and a new band or set of
levels arises due to the contribution from 
�g���	 �see an
example below�. The positions of levels split from the main
band should be found by solving the nth-order polynomial
for the real part of the spectral determinant. The complexity
of this problem is not less than that of the original eigenprob-
lem, and thus solution �4.7� becomes not very informative.

The condition n�N can be broken for a very important
type of node-node interactions, Vij =V���i−� j��, depending
on the Euclidean distance ��i−� j� between nodes, where �i
play the role of the node coordinates which can be random
values �for simplicity, we analyze one-dimensional space�.
For example, let us consider a set of nodes randomly dis-
placed from the sites in the ideal linear chain, so that
�E�� j�= ja; a is the mean distance between nearest sites and
j is an integer�. Assume also that the node-node interactions
decay exponentially with the distance,

Vij = V0 exp�− ����i − � j��2� , �5.1�

where � is the inverse interaction length and V0 is a constant.
The interactions Vij given by Eq. �5.1� can be expanded in a
Taylor series generally containing an infinite number of
terms and thus presented in the form of Eq. �2.4� with n
�N.

However, in the case of long-range interactions when the
typical interaction length � is comparable to the system size
L—i.e., �−1�L=Na—the Taylor series for Vij contains only
a finite number of terms, n�N, and the interactions are of
the polynomial type. Consequently, the ensemble-averaged
spectral density should be well approximated in the main-
band region by the function 
g0���	 evaluated according to
Eq. �4.7� which gives, for the electronic problem,


g0���	 = ���� − V0� , �5.2�

because �̃i=�i+Vii=�i+V0. It follows from Eq. �5.2� that

g0���	 does not depend on the distribution of �i at all. In-
deed, we have found numerically that in the case of long-
range interactions the ensemble-averaged spectral density
follows the theoretical prediction �5.2� �the black curve in
Fig. 7 obtained by direct diagonalization for �Na=1 is in-
distinguishable from that obtained using Eq. �5.2��. In this
regime, all the nodes interact with each other at approxi-
mately the same strength, Vij �V0, and the system is equiva-
lent to the FCG with on-site energy disorder only.

When the typical interaction length decreases, more terms
in the Taylor series for Vij should be kept for the accurate
representation of function �5.1� leading to an increase in the
order of the polynomial interactions. An increase in the value
of n gives rise to more and more levels split down off the
main band �see the red solid curve in Fig. 8 for �Na=102�.
These separate levels eventually form a broadband for
medium-range interactions �see the dark green dashed curve
in Fig. 8 for �Na=5	102� which transforms to a relatively
narrow band of width ��4V0 exp�−�2a2�, having a well-
recognizable shape of a band for the spectrum of an ideal
linear chain with nearest-neighbor interactions broadened by

FIG. 7. �Color online� The exact �solid line� and approximate
�dashed line� ensemble-averaged DOS �over 103 realizations� for
the FCG �N=3000� with node-node interactions defined by Eq.
�2.4� in which n=6. The elements of the � matrix are random
values withdrawn from the uniform distribution defined in the in-
terval 
ij � �−1,1�. The on-site energies and interaction parameters
are distributed according to �����=���� and �����=N�0,0.16�, re-
spectively. The nonlinear �-� map is shown in the inset.

S. N. TARASKIN PHYSICAL REVIEW E 72, 056126 �2005�

056126-10



diagonal and off-diagonal disorder �see the blue double-dot-
dashed and light green solid curves in Fig. 8 for �Na=103

and �Na=1.5	103, respectively�. The original main band
centered around �� �̄+V0 for long-range interactions even-
tually disappears with increasing value of �.

Therefore, we can conclude that the theory for polynomial
interactions presented in Sec. IV can be applied to systems
with Euclidean long-range interactions but fails to describe
the short-range interactions.

The other limitation of the above analysis concerns its
applicability to the disordered complex networks of the FCG
topology only. Of course, the topology of real complex net-
works is much more complicated �e.g., scale-free or small-
world topologies �3�� and the FCG can be considered as a
first approximation for the networks with high node-node
connectivity.

VI. CONCLUSIONS

To conclude, we have analyzed the spectral properties of
the Hamiltonian for both electronic and vibrational problems
defined on the fully connected graphs with a special type
�polynomial� of interactions.

Our main finding is the analytical formula �see Eq. �4.7��
for the ensemble-averaged spectral density. The ensemble-
averaged spectral density has two contributions with clear
physical interpretations: �i� the first contribution describes
the main spectral band and �ii� the second one is related to
the set of discrete levels separated from the band. The main
band originates from the bare spectral band shifted and de-
formed by means of a convolution of two probability distri-
butions of bare energies and interaction parameters. The dis-
crete levels are split from the bare spectral band due to
interactions, and the number of such levels depends on the
order of the interactions.

The approximate analytical configurational averaging is
possible due to the availability of the exact analytical solu-
tion for the resolvent matrix elements for a particular real-

ization of disorder �see Appendix A�. Technically, configura-
tional averaging is done with the use of the central-limit
theorem by replacing the function of fluctuating macroscopic
sums by the function of the means of these sums �see Eq.
�4.4��. This step can be justified and illustrated by a more
rigorous approach for a particular case �see Appendix B�. All
the final results are convincingly supported by numerics.

Both electronic and vibrational problems discussed in the
paper can be mapped to the contact process in the dilute
regime and the stochastic diffusion problem, respectively.
The results for the electronic case can thus be used for ob-
taining the lower-bound estimate of the critical parameter for
the contact process while the results for the vibrational case
allow the return probability for an information packet to be
evaluated for the communication networks.

APPENDIX A: EXACT SOLUTION FOR THE RESOLVENT
MATRIX ELEMENTS

The resolvent matrix elements for the Hamiltonian given
by Eq. �2.1� can be found exactly for the node-node interac-
tions of polynomial type �2.4�. In order to demonstrate this

let us recast the equation for the resolvent, ��Î−Ĥ�Ĝ= Î, as

Gij =
�ij

� − �̃i

−
1

� − �̃i
�

k

�i
T�kGkj , �A1�

where the renormalized bare energy �̃i is

�̃i = �i + ��i
T�

j

N

� j + �1 − ���i
T�i = �i + Ṽii, �A2�

with �i
T=�i

T�. The value of Ṽii=��i
T� j

N� j + �1−���i
T�i=�i

+ Ṽii generally depends on all � j but Ṽii=Vii��i� for the elec-
tronic problem ��=0�.

The node-separable type of polynomial interactions in Eq.
�2.4� �the i-j interaction is proportional to the matrix product
of separate node characteristics� allows factorization to be
performed there by introducing xj=�k�kGkj, so that

Gij =
�ij

� − �̃i

−
1

� − �̃i

�i
Txj. �A3�

Equation �A1� can be multiplied by �i and summed over i
and thus transformed to an equation which can be solved for
xj,

xj = �I + �
i

N
�i�i

T

� − �̃i
�−1

�j

� − �̃j
. �A4�

Substitution of xj into Eq. �A3� results in the required result
for the resolvent matrix elements,

Gij =
�ij

� − �̃i

−
�i

T

� − �̃i
�I + �

k

N
�k�k

T

� − �̃k
�−1

� j

� − �̃ j

. �A5�

The DOS is expressed via TrĜ, which is given by the
expression

FIG. 8. �Color online� The exact ensemble-averaged DOS �over
3	103 configurations� for a linear chain on N=103 nodes interact-
ing with each other according to Eq. �5.1� �V0=1 and a=1� for
different values of the inverse interaction length � �as marked�. The
on-site energies and interaction parameters are normally distributed
according to �����=N�0,0.01� and �����=N�1,0.01�, respectively.
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Tr Ĝ = �
i

N
1

� − �̃i

− �
i

N
�i

T

� − �̃i

D−1 �i

� − �̃i

�A6�

and

D = �I + �
k

N
�k�k

T

� − �̃k
� , �A7�

The eigenvalues �i of the Hamiltonian coincide with the
poles of the resolvent which are the roots of the spectral
determinant, D���= �det D����—i.e., D��i�=0. This follows
from the form of Eq. �A6� in which the contributions to the
denominator from the first sum, ���− �̃i�, are canceled by
similar terms in Eq. �A6�.

It is easy to show that Eq. �A6� can be recast in an elegant
form via the derivative of the spectral determinant,

Tr Ĝ = �
i

N
1

� − �̃i

+
d ln�det�D��

d�
. �A8�

Indeed, rewriting the second term from Eq. �A6� in the form

�
i

N
�i

T

� − �̃i

D̂−1 �i

� − �̃i

= �det�D��−1�
i

N

�
k,m

n
��i

T�k

� − �̃i

Cmk
��i�m

� − �̃i

,

�A9�

where C stands for the matrix of cofactors for matrix D, and
comparing it with the derivative of det�D�,

d det�D�
d�

= �
m,k

dDmk

d�
Cmk = − �

m,k

��i�m��i
T�k

�� − �̃i�2 Cmk,

�A10�

we arrive at Eq. �A8�. Finally, taking the imaginary part of
Eq. �A8� and using then Eq. �2.5� leads to Eq. �4.1�.

APPENDIX B: CONFIGURATIONAL AVERAGING
BY DIRECT INTEGRATION

In this appendix, we give an alternative derivation of the
expression for the ensemble-averaged spectral density in the
case of the multiplicative node-node interaction, Vij
=
22�i� j, for the random Hamiltonian defined on the FCG.
The derivation is similar in some aspects to that given in Ref.
�22� for the mean density of eigenvalues of a two-
dimensional integrable billiard.

The starting point for the derivation is Eq. �A6� recasted
for the multiplicative interaction �4.8� in the following form:

Tr Ĝ = �
i

N
1

� − �̃i

− �
i

N

22�i

2

�� − �̃i�2�1 + �
i

N

22�i

2

� − �̃i
�−1

= �
i

N
1

� − �̃i

− i�
i

N

22�i

2

�� − �̃i�2

	�
−�

0−

exp�ik�1 + �
i

N

22�i

2

� − �̃i
��dk , �B1�

where

�̃i = �i + 
22�i
2, �B2�

for the electronic problem ��=0� analyzed below for con-
creteness �the analysis can be easily extended to the vibra-
tional problem ��=1��. Using definition �2.5� and Eq. �2.6�
we obtain the expression for 
g���	= 
g0���	+ 
�g���	, where

g0���	 coincides with the first integral term in Eq. �4.2� with
Vii=
22�i

2 and 
�g���	 is given by


�g���	 =
1

N
Re�

−�

0−

eikdk� ¯� �
j

N

22� j

2

�� − �̃ j�2

	�
i

eik
22�i
2/��−�̃i�����i�����i�d�id�i �B3�

or by the equivalent expression �assuming for definiteness
that 
22�0�,


�g���	 =
1


Re�

−�

0−

eik�F�k,���N−1Q�k,��dk , �B4�

with

F�k,�� = �
−�

�

����i�f��i,k,��d�i

= �
−�

�

����i��
−�

�

eik
22�i
2/��−�̃i�����i�d�id�i �B5�

and

Q�k,�� = �
−�

�

����i�q��i,k,��d�i

= �
−�

�

����i��
−�

� 
22�i
2

�� − �̃i�2eik
22�i
2/��−�̃i�����i�d�id�i,

�B6�

where the function q��i ,k ,�� is related to f��i ,k ,�� by the
equation

q��i,k,�� = −
1


22�i
2

�2f��i,k,��
�k2 . �B7�

The next step is in the evaluation of the integral,

f��i,k,�� = �
−�

�

e−i�/�z−�i�����i�d�i �B8�

���−k
22�i
2�0�, with the integrand exhibiting an essential

singular point at �i=�+i0−
22�i
2�z. This can be done by

expanding the exponential function in a Taylor series and
integrating each term,

f = �
−�

�

����i��1 − i�
1

z − �i
+

�i��2

2

1

�z − �i�2 + ¯ �d�i

= 1 − i��R�z� + iI�z�� +
�2

2
�R��z� + iI��z�� + O��3/�3� ,

�B9�

where the functions R�z� and I�z� are defined by Eq. �4.6�. In
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order to evaluate the third term in Eq. �B9� we integrated
once by parts and used the identity

R��z� =
W

−�

� ���z� − ����i�
�z − �i�2 d�i =

W
−�

� �����i�
z − �i

d�i. �B10�

In the expansion �B9�, we keep only the terms up to the
second order in � /� because this is enough for obtaining the
leading term for q��i ,k ,�� according to Eq. �B7�:

q��i,k,�� = − 
22�i
2�R��� − 
22�i

2� + iI��� − 
22�i
2�� .

�B11�

The higher-order terms in � /� are small both for f��i ,k ,��
and q��i ,k ,�� because typical values of �k� significantly con-
tributing to integral �B4� in the band region are �k�
�� / �
22�i

2N� �see below� and thus � /��1/N�1. Note
that the same result for f��i ,k ,�� can be obtained by a dif-
ferent method based on the shift of the essential singularity
to infinity as was suggested in Ref. �22�.

Substitution of Eqs. �B10� and �B11� into Eqs. �B5� and
�B6� gives

F�k,�� = 1 + ik�R1��� + iI1���� +
k2

2
�R2���� + iI2����� ,

�B12�

Q�k,�� = − R1���� − iI1���� , �B13�

where

Rm�k,�� = �
−�

�

����i��
22�i
2�mR�� − 
22�i

2�d�i,

�B14�

Im�k,�� = �
−�

�

����i��
22�i
2�mI�� − 
22�i

2�d�i. �B15�

Using the above expressions for F�k ,�� and Q�k ,�� we can
rewrite Eq. �B4� as


g���	 = −
1


Re��R1���� + iI1������

−�

0−

e��k�dk� ,

�B16�

with

��k� = ik + �N − 1�ln�1 + k�iR1 − I1� +
k2

2
�R2� + iI2���

= ik�1 + NR1� − kNI1 +
k2N

2
�R1

2 + R2� − I1
2�

+
ik2N

2
�I2� + 2R1I1� + O�k3� . �B17�

There are two energy regions: �i� inside the band where
Rm���� Im����
22

m �m /� and �ii� outside the band where

Rm����
22
m �m / ��*− �̄� with ��*− �̄��� and Im��� either ap-

proaches zero �e.g., exponentially for the normal distribution
��� or identically equals zero for the box distribution. In
these regions, the integral �B16� has different contributions
to the total ensemble-averaged spectral density. Inside the
band, we can ignore the terms �k2 in expression �B17� for
��k�, so that e��k� exponentially decays for �k�→� on the
typical scale k�1/ �NI1��� / �
22�

2N� and


�g���	 = −
1

N

�1 + NR1�NI1� − NR1�NI1

�1 + NR1�2 + �NI1�2 , �B18�

which exactly coincides with the second term in Eq. �4.7�
bearing in mind that D̃=1+NR1 and D5 =NI1.

Outside the band, ��→0 and thus Im→0, so that the real
linear term in k in Eq. �B17� becomes negligible and the next
terms in the expansion must be kept,

��k� � ik�1 + NR1� +
k2N

2
�R1

2 + R2�� , �B19�

where

R2� � −� � � 
22�i
2

� − 
22�i
2 − �i

�2

����i�����i�d�id�i � − x2

�B20�

and R1= x̄, xi=
22�i
2 / ��−
22�i

2−�i�. Note that Eq. �B19�
contains an extra term �R1

2 in comparison with a similar
expression given in Ref. �22� which is due to a more accurate
expansion of � in k. Straightforward evaluation of the Gauss-
ian integral in Eq. �B18� leads to


�g���	 = −
R1�

�2Nvar�xi�
e−�1 + NR1�2/2Nvar�xi�

=
1

N

1
�2�2

e−�� − �*�2/2�2
, �B21�

with var�xi�=−R1
2−R2� and

�2 = −
1

N

R1
2 + R2�

�R1��
2 �

1

N
�var��i� + var�N
22�i

2�� . �B22�

The spectral density given by Eq. �B21� represents a Gauss-
ian peak of width � centered at �=�*. The location of the
peak �*� �̄−
22�

2 is the solution of the equation 1
+NR1��*�=0, identical to Eq. �4.13�, and thus the expression
for �* coincides with that given by Eq. �4.14�.

All the derivations presented in this appendix were under-
taken under the assumption that the coefficient 
22 does not
depend on N. However, in the case when 
22�1/N all the
results obtained for the main band still hold but Eq. �4.14�
for the position of the separate levels is no longer correct in
general and the equation 1+NR1��*�=0 should be solved
without using the assumption that the level is well separated
from the main band.
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